Infinite-Horizon Model Predictive Control for Periodic Tasks with Contacts

نویسندگان

  • Tom Erez
  • Yuval Tassa
  • Emanuel Todorov
چکیده

We present a method that combines offline trajectory optimization and online Model Predictive Control (MPC), generating robust controllers for complex periodic behavior in domains with unilateral constraints (e.g., contact with the environment). MPC offers robust and adaptive control even in high-dimensional domains; however, the online optimization gets stuck in local minima when the domains has discontinuous dynamics. Some methods of trajectory optimization that are immune to such problems, but these are often too slow to be applied online. In this paper, we use offline optimization to find the limit-cycle solution of an infinite-horizon average-cost optimal-control task. We then compute a local quadratic approximation of the Value function around this limit cycle. Finally, we use this quadratic approximation as the terminal cost of an online MPC. This combination of an offline solution of the infinite-horizon problem with an online MPC controller is known as Infinite Horizon Model Predictive Control (IHMPC), and has previously been applied only to simple stabilization objectives. Here we extend IHMPC to tackle periodic tasks, and demonstrate the power of our approach by synthesizing hopping behavior in a simulated robot. IHMPC involves a limited computational load, and can be executed online on a standard laptop computer. The resulting behavior is extremely robust, allowing the hopper to recover from virtually any perturbation. In real robotic domains, modeling errors are inevitable. We show how IHMPC is robust to modeling errors by altering the morphology of the robot; the same controller remains effective, even when the underlying infinite-horizon solution is no longer accurate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Applying Event-triggered Strategy on the Model Predictive Control

In this paper, the event-triggered strategy in the case of finite-horizon model predictive control (MPC) is studied and its advantages over the input to state stability (ISS) Lyapunov based triggering rule is discussed. In the MPC triggering rule, all the state trajectories in the receding horizon are considered to obtain the triggering rule. Clearly, the finite horizon MPC is sub-optimal with ...

متن کامل

Computationally Efficient Long Horizon Model Predictive Direct Current ‎Control of DFIG Wind Turbines ‎

Model predictive control (MPC) based methods are gaining more and more attention in power converters and electrical drives. Nevertheless, high computational burden of MPC is an obstacle for its application, especially when the prediction horizon increases extends. At the same time, increasing the prediction horizon leads to a superior response. In this paper, a long horizon MPC is proposed to c...

متن کامل

Economic Dynamic Real-Time Optimization and Nonlinear Model-Predictive Control on Infinite Horizons

This paper investigates the formulation of nonlinear model-predictive control problems with economic objectives on an infinite horizon. The proposed formulation guarantees nominal stability for closed-loop operation. Furthermore, a novel solution method of the infinite horizon method through a transformation of the independent time variable is employed. The closed-loop optimization with infinit...

متن کامل

Improved Optimization Process for Nonlinear Model Predictive Control of PMSM

Model-based predictive control (MPC) is one of the most efficient techniques that is widely used in industrial applications. In such controllers, increasing the prediction horizon results in better selection of the optimal control signal sequence. On the other hand, increasing the prediction horizon increase the computational time of the optimization process which make it impossible to be imple...

متن کامل

Efficient NMPC of unstable periodic systems using approximate infinite horizon closed loop costing

We develop a state-of-the-art nonlinear model predictive controller (NMPC) for periodic unstable systems, and apply the method to a dual line kite that shall fly loops. The kite is described by a nonlinear unstable ODE system (which we freely distribute), and the aim is to let the kite fly a periodic figure. Our NMPC approach is based on the “infinite horizon closed loop costing” scheme to ensu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011